A Performance Study of Baum and Batac Jigs

Since about 1960, the Department of Energy's Coal Preparation Division, which was part of the U.S. Bureau of Mines prior to October 1977, has been evaluating the cleaning performance of the major pieces of coal cleaning equipment used in the U.S. To date, performance studies have been published for concentrating tables, sand cones, dense-medium vessels, dense-medium cyclones and hydrocyclones. Also, a report on air tables will be published soon.

The final cleaning device to be investigated as part of the series is the jig. The jig study has been ongoing for the past six years. Three Baum and two Batac jigs have been sampled, but evaluation of the last Baum jig is not yet complete.

Principle of both jigs is the same

There have been several papers published in the last few years about the Batac jig, recently developed in Germany by Humboldt Wedag, and its performance in U.S. preparation plants. By now most people concerned with cool processing know of the basic differences between it and the Baum jig. The intent here is to describe the equipment and the installations sampled, not to endorse or suggest a particular unit for a given application. Although the principles of cleaning coal by jigging are the same for both jigs, the Batac has improved and automated the methods of air distribution, pulsation and bed control, while providing higher capacity in the same physical space.

In the Baum jig, jigging action in the coal bed is achieved from air pulsations in a chamber on one side of

the vessel (fig. 1). Sliding or rotary valves provide the air pulsations. The pulsations are uniformly distributed along the width of the bed through a pipe directly underneath the bed screen, thus eliminating the side chamber and allowing for a wider jigging bed. Air pulsations are produced by the action of flat disc type valves, which provide a sharp cutoff of the air and are operated from an electronic pre-set timer in an instrument cabinet.

An important and interesting design variation of the Batac jig (fig. 2) is the use of feldspar beds in cells 3, 4 and 6 to facilitate fine coal ($^{1}/_{2}$ in. \times 0) cleaning. These are not necessary for Batacs washing coarse ($^{+}$ $^{1}/_{2}$ -in.) coal only. Although the three current installations in the U.S. are used for cleaning the fine coal while Baum jigs handle the coarse, in Europe, Batacs are also used for coarse coal cleaning.

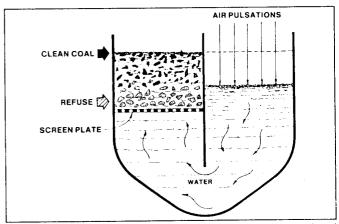


Fig. 1. Simplified end view of a Baum jig. Jigging action in the Baum jig is achieved by air pulsations provided by valve operation

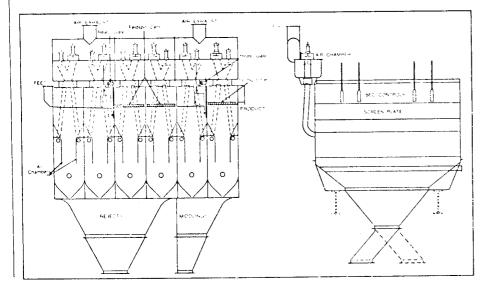


Fig. 2. Fine coal cleaning in the Batac jig is achieved by use of feldspar beds in cells 3, 4, and 6. Current installations in the U.S. clean only fine coal but they are applicable to coarse coal cleaning as well

	BAUM #1	BAUM #2	BATAC #1	BATAC #2
FEED SIZE RANGE, IN.	6 × 1/4	4 > 0	3/4 × 0	1/2 × 0
FEED RATE TO JIG, TPH	259	337	595	400
TOTAL JIGGING AREA, SQ FT	123	168	326	261
JIG FEED LOADING, TPH/FT2	2.1	2.0	1.8	1.5
NO. OF COMPARTMENTS-CELLS	2-5	3-8	3-6	3-6
SCREEN OPENINGS BY COMPARTMENT, IN.:				
PRIMARY	7/8	3/4	3/8	5/16
SECONDARY	5/8	1/2	7/8	5/8
TERTIARY		3/8	3/8	5/16
PULSATIONS PER MINUTE	31	22	55	55
WATER CONSUMPTION, GPM/TPH	12.7	7.1	10.0	10.2
JIGGING AIR PRESSURE, PSIG	3	3.5	5	6.5
FELDSPAR SIZE, IN.			3 × 1	1 1/2 × 3/4

Detailed washability done on each product

A summary of the operating conditions of the jigs sampled for this study (table 1) reveals some of the other differences between the new Batac and the conventional Baum, namely: (1) the higher jigging air pressure required by the Batac, (2) the higher pulse-per-minute rate of the Batac, (3) the larger jigging area of the Batac and (4) the lower feed loading in the Batac, primarily for the benefit of the fine size of the feed.

Since the Baum jigs were serving mainly as coarse coal washers, their performance was evaluated on the coal down to 14 mesh; the Batac jigs, cleaning fine coal, were evaluated down to 200 mesh.

Table 1. Summary of operating conditions of jigs

Table 2. Specific gravity analysis of the size fraction and composite clean coal of Baum #1

0.75 50	WEIE::-	DIRECT T. SPECIFIC RECOVERY, PCT. ASH. SULFUR. PCT.							CUMULATIVE PCT. RECOVERY, PCT. ASH, SULFUR, PC							
SIZE FRACTION INCH OR MESH	WEIGHT, PERCENT	GRAVITY	WEIGHT		BTU/LB		SULFUR, PYRITIC		RECOVERY, WEIGHT		BTU/LB		SULFUR. PYRITIC			
6 BY 4	6 78 PERCÉNT	FLOAT 1 30	45.6	48.6	15290	28	0.08	0.58	45 6	483	15290	28	0.08	0.58		
		1.30-1.35	25 2	25.9	14852	4 4	0.09	0.55	708	74 2	15134	3 4	0.08	0.5		
		1 35-1 40	4 9	4.7	13990	7.8	0 03	0.46	75 7	78.9	15060	3 7	0.08	0.5		
		1 40 1 50	24.4	21.1	12510	14.8	0.13	0.51	100 0	1000	14439	6 4	0.09	0.5		
		1 50-1 60	0 0	• • • • •	•••••	••••	•••••	• • • • •	100 0	100 0	14439	6.4	0.09	0.5		
		1 60-1 70	0.0	••••		••••		• • • • •	100 0	1000	14439	6 4	0 09	0.5		
		1 70-1 80	0.0	• • • • •	••••	••••	•••••	••••	1000	1000	14439	6 4	0 09	0 5		
		SINK 1 80	0 0	•••••	•••••	•••••	•••••	•••••	100 0	100.0	14439	6 4	0 09	0 5		
4 BY 2	20.96 PERCENT	FLOAT 1 30	38 9	41.1	15310	2.8	0 1 4	0 55	38 9	411	15310	28	0 14	0 5		
		1 30-1 35	334	34 2	14851	4 7	0 1 2	0 4 5	723	753	15098	3 7	0 13	0 5		
		1.35-1.40	123	11.7	13790	9 4	0 19	0 55	846	870	14908	4 5	0 14	0 5		
		1 40-1 50	10 7	93	12686	16 2	0 25	0 6 7	95.3	96 4	14659	58	0 15	0 5		
		1 50-1 60	4 2	3 3	11410	23 B	0 25	0 54	99 5	997	14522	66	0 16	0 5		
		1.60-1.70	0 5	03	9482	34 2	0 40	081	999	100 0	14498	6 7	0 16	0.5		
		1 70-1.80 SINK 1 80	0 1 0 0	0.0	8770	38 2	0 16	0 62	100 0 100 0	100 0 100 0	14494 14494	6.7 6.7	0.16 0.16	0 5 0 5		
2 BY 1	2 BY 1 29 90 PERCENT	FLOAT 1 30 1.30-1 35	36 6 32 9	39 1	15350 14920	24	0 14 0 25	0 58 0 62	36 6 69 6	39 1 73 4	15350 15146	2 4 3 5	0 14 0.19	0 5 0 6		
		1.30-1.35	112	109	13890	97	0 25	062	69 6 80 8	73 4 84 2	15146	44	0.19	0.6		
		1 40-1 50	117	103	12670	161	0 2 2	062	924	94 5		58	0 2 0	06		
		1 50 - 1 60	5.4	4 1	11080	256	0.30	0.62	978	98 6	14483	9.6	0 2 1	0.6		
		1 60-1 70	15	10	9590	33.8	0.54	0.88	993	996	14410	7.3	0 2 2	0.6		
		1 70-1 80	0.4	0 2	8390	411	0 44	0 72	99 7	999	14384	75	0 2 2	06		
		SINK 1 80	0.3	01	6230	54.7	1 43	1 54	100 0	1000	14362	7.6	0 22	0.6		
1 RY 1/2	19.65 PERCENT	FLOAT 1 30	40.3	429	15390	2 4	0.14	0.60	40 3	429	15390	2 4	0.14	0.6		
1011/2	19.037 61106111	1 30 - 1 35	30 9	319	14944	4.7	0 19	0.71	71 1	748	15196	3 4	0 16	0.6		
		1 35 1 40	116	111	13944	96	019	0.78	B2 7	85 9	15021	43	017	0.6		
		1 40 - 1 50	10 1	8.9	12800	159	0.30	0.62	92 7	94 8	14780	5.5	0 18	0.6		
		1.50-1.60	44	3 4	11072	24 7	0 38	0.65	97 1	98 2	14612	6 4	0 19	0.6		
		1 60-1 70	1.7	11	9640	32.2	0.39	0.68	98.8	993	14526	6.8	0.19	0.6		
		1 70-1 80	0.7	0.4	7994	428	0.76	1 05	99.5	99.7	14484	7 1	0 20	0.6		
		SINK 1 80	0.5	0 3	8270	414	1 28	1 37	100 0	1000		7 2	0 20	0 6		
1/2 BY 1/4	10.43 PERCENT	FLOAT 1 30	45 5	479	15380	23	0 1 2	0 59	45.5	479	15380	2 3	0 1 2	0 5		
		1 30-1 35	30 0	315	14919	48	0 1 2	0 59	76 3	794	15193	3 3	0 1 2	0 5		
		1 35-1 40	98	9 4	14000	98	0 2 3	0 6 3	86 1	88 7	15058	4 0	0 13	0.5		
		1 40 1.50	8 5	7 5	12835	163	0 31	065	94 6	96 3	14857	5 2	0.15	0.6		
		1 50-1 60	3 2	2 4	11088	25 9	0 40	063	978	98 7	14734	58	0 16	0.6		
		1 60-1 70	1 2	0 8	9690	336	0 54	1 21	990	995	14672	6 2	0 16	0 6		
		1 70-1 80 SINK 1 80	0 6 0 4	03	8362 6850	40 8 49 0	0 97	1 53 2 34	99 6 100 0	99 8 100 0	14635 14605	6 4 6 5	017	0 6 0 6		
1/4 BY 8	7.38 PERCENT	FLOAT 1 30 1 30-1 35	56 3 26 7 .	58 3 26 8	15450 15007	2 1 4 6	0 09	0 59	56 3 83 0	58 3 85 1	15450 15307	2 1 2 9	0 09	0.5		
		1 35-1 40	80	7.5	14037	9 2	0 27	0 6 2	910	926	15196	3 5	0 1 2	0.6		
		1 40-1 50	5 9	5.2	13070	150	0 2 9	0 59	96 9	978	15067	4 2	0 13	0.60		
		1 50-1 60		14	11627	213	0 39	0 6 7	98 7	99 2	15007	45	014	0.6		
		1 60-1 70	0.7	0.5	10710	278	0.51	0.85	994	99 7	14947	46	0.14	0.6		
		1 70-1 80	03	02	9330	310	0 7 2	089	99 7	998	1495B	4 7	0 14	0.60		
		SINK 1 80		0 2	7452	46 0	3 35	3 35	100 0	100.0	14933	4.8	0.15	0.6		
8 BY 14	2 50 PERCENT	FLOAT 1 30	63 5	654	15510	18	0 12	0 58	63.5	654	15510	18	0 1 2	0 5		
••••		1 30-1 35		23 2	15030	4 3	0.17	0.58	86 7	88 6	15381	2 5	0 13	0 5		
		1 35-1 40		5 9	14313	8.7	0 22	0 60	930	945	15309	29	0 14	0.5		
		1 40-1 50	4 3	3 7	13140	147	0 30	0 6 5	972	98 2	15214	3 4	0 15	0.5		
		1 50-1 60		10	11623	230	0 4 5	0 6 2	986	993	15165	3 7	0 15	0 5		
		1 60-1 70	0.5	0 4	10422	29 1	0.51	0 7 2	991	996	15139	38	0 15	0 5		
		1 70-1 80		0 2	8610	368	0 84	1 09	994	998	15121	39	0.15	0 5		
		SINK 1 80	0 6	0 2	4960	514	3 4 1	3 44	100 0	1000	15058	4 2	0 17	0 6		
COMPOSITE.	97 60 PERCENT	FLOAT 1 30	416	44 1	15365	2 4	0 13	0.58	416	44 1	15365	2 4	0 13	0 5		
6 BY 14	-	1 30 - 1 35		320	14912	4 7	0.18	0 59	727	76 1	15171	3 4	0 15	0.5		
		1 35-1 40		10 1	13905	9.5	0.20	0 64	833	86 2	15011	4 2	0 16	0.5		
		1 40 - 1 50	110	9.7	12707	158	0 2 5	0 6 2	943	959	14741	5 5	0 17	0.5		
		1 50-1 60	3 9	3 0	11178	248	0 32	0.61	98 3	98 9	14598	6 3	0 1 7	0.59		
		1 60 1 70	1.1	0.7	9669	33 0	0 48	0 85	99 4	997	14543	6 6	0 18	0.60		
		1 70-1 80		0.2	8314	409	0.66	0 99	99 7	999	14521	6 7	0.18	0.6		
	SINK 1 80		0.1	7147	47.7	1 80	1.88	1000	1000	14501	6 B	0.18	0.6			

(1) 2 4 PERCENT OF THIS PRODUCT WAS MINUS 14 MESH MATERIAL CONTAINING 14820 BTU/LB 5 3 PERCENT ASH 0 14 PERCENT PYRITIC SULFUR.

AND 0 56 PERCENT TOTAL SULFUR

SIZE, INCHES OR MESH		8 4 4	4 + 2	2 · 1	4 - 1/2	1/2 - 1/4	1/4 + 8	A × 14	14 - 0	6 - 14
SIZE, INCHES ON WEST		2.2.3								
SCREEN ANALYSIS, PERCENT										
FEED		8 A	24 3	30 3	173	8.6	6 1	2 1	2.4	976
CLEAN COAL		8.8	210	29 9	197	104	7.4	2 5	2 4	97 6
REFUSE		116	29 2	30 a	137	6.3	4 1	1.6	2.5	97 5
BTU PER POUND										
FEED		8000	8845	9590	10958	11533	12500	12588	11753	9925
CLEAN COAL		14439	14494	14362	14452	14605	14933	15088	14820	14501
REFUSE		2407	2709	2567	3365	3717	5850	6694	7193	2981
ASH PERCENT										
		45 1	40 1	35 1	279	24 8	19.1	18 6	235	33 7
CLEANCOAL		6.4	6.7	7.6	7 1	6.5	4 8	4 2	5 3	6.6
REFUSE		78.7	76.3	75 7	729	71 2	58 1	52 8	50 6	74 5
PYRITIC SULFUR PERCENT										
FEED		0.20	0.21	0.26	0 27	0.29	0.30	0.31	0.38	0.25
CLEAN COAL		0.09	0.16	0 22	0 20	0 17	015	0 17	0 14	0 18
REFUSE		0.30	0 27	0 32	0 41	0 57	071	0.65	0.69	0.35
TOTAL SULFUR PERCENT										
FEED		0.43	0.42	0.52	0.61	0.63	0.68	0.67	0 68	0.53
CLEAN COAL		0.55	0 53	0.61	0 67	0.62	0.61	0 60	0.56	0.60
		0 33	0.31	0.38	0.48	0.65	0 87	0.62	0 86	0.41
HE OSE		033								
BTU RECOVERY	PERCENT	83 9	85 3	89 2	90 3	90 9	87.5	84 3 70 5		66 1 60 3
WEIGHT RECOVERY (YIELD)	. 00	46 5	52 1	59 5	68.5	718	73 2	70 S	*****	62 5
THEORETICAL WEIGHT RECOVERY	00	48 4	52 4	612	712	75 1	78 7			96.5
WEIGHT RECOVERY EFFICIENCY	00	100 0	90 3	972	96 2	95.5	931	66.5		07
ASH ERROR	00	0 0	0 1	0.6	0.9	10	0.9	1.4		0,
FLOAT IN REFUSE PERCER	ST OF PRODUCT	1.0	4.1	70	122	154	26 5	326		8.3
SINK IN CLEAN COAL	00	0.5	19	18	1.7	1.6	20	2 8		20
TOTAL MISPLACED MATERIAL	PCT OF FEED	1.3	29	3 9	50	5.5	8.5	118		4.5
NEAR GRAVITY - 0 10 MATERIAL	DO	14.2	8.5	6 0	4.5	39	8.6	7 3		
		1 497	1 551	1.617	1.050	1 643	1 544	1 501		1 585
SPECIFIC GRAVITY OF SEPARATION	•	0.023	0.055	0.084	0 100	0 113	0 122	0 145		0 087
PROBABLE FRROR		0 047	0 100	0 135	0 153	0 176	0 225	0 290	*****	0 148
IMPERFECTION		50	36.0	52.0	620	690	750	870	*****	64 0
ERROR AREA			300			• • •				
DISTRIBUTION, PERCENT TO CLEAR	NED COAL									
(SPECIFIC GRAVITY FRACTION)					98.4	97.6	96.3	934	*****	98 4
FLOAT 1 30		99 5	99 5	99 1			90.9	84.5		97.2
1 30 + 35		98 4	995	98 4	96.6	96 1	909	74.6	*****	95.4
1.35-1.40 .		1000	98 9	96 6	95 3	93.5		605		89.6
1 40-1 50		935	89.5	924	90.3	877	710	60 S		51.6
1 50 1 60		0.0	50 3	71.1	76 4	71.4	4R 6	40 2 26 4	*****	11.9
1 50 1 70		0.0	117	39 6	52 1	48 4	26.6			155
1 70-1 80		0.0	2 6	15 5	26 7	26 6	15.7	17.3		05
SINK 1 80		0.0	0.0	0.5		1 2	1.5	26		0.5

Table 3. Summary of performance characteristics of Baum #1

SIZE, INCHES OR MESH	4 × 2	2 * 1	1 + 1/2	1/2 × 1/4	1/4 • 8	8 - 14	14 - 0	4 - 14
SCREEN ANALYSIS PERCENT								
FEED	6.2	139	18 4	18 2	173	106	153	84 7
CLEAN COAL	1.9	6.9	14 4	198	21.5	140	215	78 8
REFUSE	126	24 3	24 4	159	111	5 6	6 2	938
STU PER POUND								
FEED	3855	5159	7485	9839	11044	11286	8594	8546
CLEAN COAL	13448	13259	13395	13470	13467	13194	10025	13387
MEFUSE	1869	1720	2281	3106	4032	4125	2420	2509
ASH PERCENT								
FEED	86 8	58 6	44 7	30 €	226	20 8	378	36 1
CLEAN COAL	8 9	105	9 1	8.7	8.3	9.4	28 9	8 9 74 4
REFUSE	79 8	790	76 2	711	84 6	83 7	76 2	74.4
PYRITIC SULFUR, PERCENT								2.76
FEED	4 71	3 40	2 63	2 45	2 35	3 50	2 67 2 12	186
CLEAN COAL	3 00	2 57	2 1 1	1 93	1 70	1 51	5 0 3	1 86
REFUSE	5 32	3.75	3 08	3 41	4 2 2	4 /9	5 0 3	3 63
TOTAL BULFUR, PERCENT					3.95	3 78	4.53	4.03
FEED	9 40	4 28	3 79	3 8 2 3 7 1	3 62	3 33	4 23	3 74
CLEAN COAL	4 10	4 46	3 99	4 02	4 90	5 4 6	5 80	4 38
REFUSE	5 67	4 21	3 62	4 02	4 90	3 - 0	3 80	4.50
BTU RECOVERY PERCENT	64 3	76 6	838	88 9	90 6	923		86 9
WEIGHT RECOVERY (YIELD) DO	103	29 8	48 8	650	74.3	790		55 5 61 5
THEORETICAL WEIGHT RECOVERY DO	193	33 4	52 5	713	811	85 4	*****	903
WEIGHT RECOVERY EFFICIENCY DO	94 9	89 3	89.5	91 1	91.6	92.5		90 3
ASH ERROR DO	0.5	1.5	15	1.6	19	30		, ,
FLOAT IN REFUSE PERCENT OF PRODUCT	2.2	5.6	115	18 4	273	27 4	••••	127
SINK IN CLEAN COAL DO	3.0	4.3	2 2	1 9	1.7	3 3		2 9
TOTAL MISPLACED MATERIAL PCT OF FEED	2 1	5 2	7.1	7.7	8 2	8.4		7.3
NEAR GRAVITY - 0 10 MATERIAL DO	5 1	70	5 5	30	1 3	13		40
SPECIFIC GRAVITY OF SEPARATION	1 508	1 528	1 578	1 556	1 799	1 823	•••••	1 604
PROBABLE ERROR	0.061	0.083	0 0 7 7	0 146	0 210	0 313		0 123
IMPERFECTION	0 120	0 157	0 133	0 223	0 263	0 360	*****	0 204
ERRORAREA	34 0	80 0	68 0	96 0	1270	1330	*****	870
DISTRIBUTION PERCENT TO CLEANED COAL								
(APECIFIC GRAVITY FRACTION)								
FLOAT 1 30	100 0	930	874	93 1	939	93 2		929
1 30-1 35	97.4	938	938	930	936	96 5		94 0
1 35-1 40	90 8	915	86 2	90 8	698	931		90 4
1 40-1 50	728	722	79 2	88 7	85 3	898		623
1 50-1 60	317	43.4	60 6	748	736	810		64 7
1 60-1 70	0.0	15.3	225	513	615	71 9		38 4
1 70 1 80 .	0.0	134	18.6	35 7	56.5	650		30 2 12 7
1 80 2 00	0.0	3 7	7 9	194	319	330		87
2 00 - 2 20	00	1.4	2 0	8 0	18 6	28.2		13
SINK 2 20	0.0	0 1	0 1	0.9	3 6	128		, ,

Table 4. Summary of performance characteristics of Baum #2

SCREEN ANALYSIS, PERCENT PERS CHARGE ON STATE OF THE SCREEN STATE OF THE SCREEN CHARGE ON STATE OF THE SCREEN STATE OF THE SCR		13 8 85 26 1 8624 13384 1005 52 9 13 0 86 1	9 8 9 12 4 9705 13870 1408 35 3 10 6	11 7 11 1 13 3 10400 14113 1885	31 6 32 6 28 2 11549 14600 2057	11 2 12 2 6 1 12108 14533 1664	8 1 8 8 4 1 12328 14518	47 55 72 12653	3 5 4 3 1 2 17040 13052	2 4 3 0 0 5 12510 12109	1 4 7 1 9 7 10147	00 E 07 E 00 7
PEED CLEAN COAL AFFURE TU YER POUND PUT YER POUND PUT YER POUND PUT YER ASH PEECENT PEEC CLEAN COAL ASTUDE ASTUDE ASTUDE CLEAN COAL		85 281 8824 13384 1005 52.9	9 6 12 4 9705 13870 1406 25 3	10400 14113 1865	32 6 26 2 11549 14400	12 2 6 1 12106 14533	12128	5 5 7 2 12653	12	12510	10347	97 \$ 99 3 10735
CLEAN COAL MITURE BY ONE ONL MITURE FRED CLEAN COAL MITURE BON FRED FRED FRED FRED FRED FRED FRED FRED		28 1 8624 13384 1005 52 9	9705 13820 1406	133 10400 14113 1865	26 2 11549 1	0 1 12109 14533	12328	12653	12040	12310	10347	10735
MFFUSE TIL VER POUND FEED CLEAN COAL MFFUSE ABAN PERCENT FEED CLEAN COAL MFFUSE MFFUSE MFFUSE FEED CLEAN COAL FEED FEED CLEAN COAL FEED FEED CLEAN COAL		8024 13384 1005 52.9	9705 13820 1406 35.3	10400	11549	12108	12128	12653	17040	12310	10347	10735
FEED CLEAM COAL REFURE REFURE CLEAM COAL REFURE REFURE REFURE REFURE REFURE FEED CLEAM COAL REFURE FEED CLEAM COAL CLEAM COAL REFURE FEED CLEAM COAL		13384 1005 52.9 13.0	13820 1406 35.3	14113	14400	14533						
CLEAN COAL METUDE SAM PERCENT FEED CLEAN COAL METUDE FEED FEED FEED CLEAN COAL FEED FEED CLEAN COAL		13384 1005 52.9 13.0	13820 1406 35.3	14113	14400	14533						
MEFUSE LISH PERCENT FEED CLEAN COAL MEFUSE PVHITIC SULFUM PERCENT FEED CLEAN COAL		1005 51 9 13 0	1406 35.3 10.6	1865			16319					14175
MEFUBE ASAM PERCENT FEED CLEAN COAL REFUSE PRINTIC SULFUR PERCENT FEED CLEAN COAL		51 9	35.3		2057			1478	2099	2136	2359	1543
FEED CLEAN COAL REFUSE PRINTING SULFUM PERCENT FEED CLEAN COAL		130	10.6	310			1380	1476	2000	1.70		
CLEAN COAL REFUSE PROTIC SULFUM PERCENT FEED CLEAN COAL		130	10.6	310				10.5	130	100	30 4	26.0
REFUSE Prairic SULFUR PERCENT FEED CLEAN COAL					24.7	20 8	199	',;	***	114	20 1	
REFUSE Prairic SULFUR PERCENT FEED CLEAN COAL				•)	7 8	• • •		80.4	734	71.4	17.5	92.1
FEED CLEAN COAL			***	● 2 0	19 2	80 6	817		,,,			•••
CLEAMCOAL								0.90	0.05	1.14	0.42	9 60
CLEAMCOAL		0 90	0.54	0 79	0 . 7	0 00	0.90	0 10	0 37	0 0 3	0 34	0 41
		0 48	0 51	0 70	0 44	0.35	0.34		7 21	9 9 4	190	1 60
		0 34	0.50	1 00	3.50	3 64	4 04	5 10	, , ,	***		
TOTAL BULFUR PERCENT								1 40	144	7 82	0 00	1 20
FEE0		0 78	0 07	107	1 29	1 43			0.40	1 12	0.00	0.05
CLEAN COAL		1.11	1 90	1 04	0 11	0 05	0 0 7	0 45	7.40	10 31	2 94	1.00
REFUSE		0 50	0 7 2	1 16	3 51	3 96	4 17	,	/ ••	.0.,1		
BTU RECOVERT	PERCENT	917	95 1	95 2	95.0		98 0	90.0	** *	99 1		96 1 72 0
WEIGHT RECOVERY (VIELD)	DO	45.4	66 3	101	78 9	41.2	828	80 0	92.5	91.0	*****	74.0
THEORETICAL WEIGHT RECOVERY	00	45.0	66 \$	70 0	78 1	47 1	814	88 7	94 1	***		90 3
WEIGHT RECOVERY EFFICIENCY	90	94 9	99.3	** *	94 5	98 9	99 1	99 1	***	0.0		07
ASH ERROR	DO	0.4	0.3	0.3	0.5	0 5	0.6	0 5				
FLOAT IN REFUSE PET	RCENT OF PRODUCT	,,	30	44		5.5	3 4	4.4	219			
SINK IN CLEAN COAL	DO.	1.0	1.1	1.2	10	0.6	,,	2.6	44			2.1
TOTAL MISPLACED MATERIAL	PCT OF FEED	10	20	1.2	2.3	0.6	1 7	2 0	• 0			
HEAR GRAVITY . O 10 MATERIAL	DO	14	2 0	2 9	21	10	0.6	• • •	33			
SPECIFIC GRAVITY OF SEPARATION		1 700	1.742	1.747	1 683	1813	1 887	1 950	2 198			0 12
		0 101	0.098	0 104	0 109	0 116	0.082	0 145		1		012
PROBABLE ERROR		0 130	0 133	0 149	0 159	0 143	0.093	0 153	*****	*****		78.0
ERROR AREA		650	84 0	05 Q	710	66 0	59 0	87 0	+30	*****		
DISTRIBUTION, PERCENT TO CLEANED	COAL											
(SPECIFIC GRAVITY FRACTION)			99.9	99 7		99.5	99.5	49 7	99 6	998		985
FLOAT 1 30		99.0	900	99 5	990	99.6	99 7	995	989	99 2		99 4
1 30 1 35		90 0	99)	98.3	977	90 9	99.5	91 4	98.6	99 2		98 4
1 35 1 40 .			90 7	99.0	93 9	97.3	98 7	96.2	98 3	90 1	*****	96 6
1 40 1 50		•••	80 4	551	414	913	97.4	910	96.5	98 7		89 1
1 50 1 60		93.5	716	62.0	303	78.0	910	933	915	923		721
1 80-1 70		82 B	477	10.6	36 7	84 /	97.1	933	91.7	928		50 5
1 70 1 40		80 4	17.5	12.	133	28 7	45.0	61.3	80.3	918		72 4
. 40 2 00		24 2	03	0.4	0.0	23	37	16.3	39.4	6/3		3 0

Table 5. Summary of performance characteristics of Batac #1

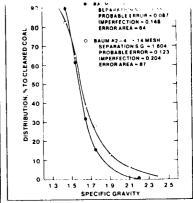


Fig. 3. Performance of Baum jigs #1 and #2 at +14 mesh composite

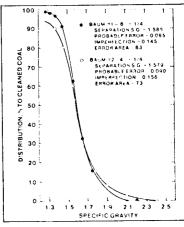


Fig. 4. Performance of Baum jigs #1 and #2 at 1/2-in. composite

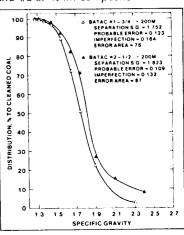


Fig. 5. Performance of Batac jigs #1 and #2 at +200 mesh composite

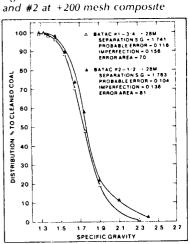


Fig. 6. Performance of Batac jigs #1 and #2 at +28 mesh composite

Mining Congress Journal

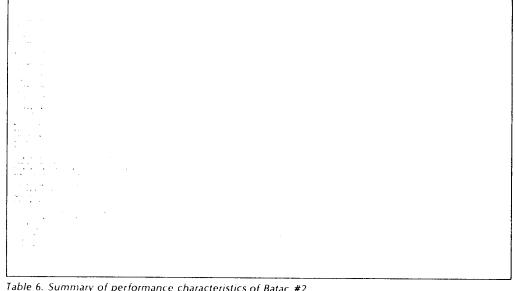
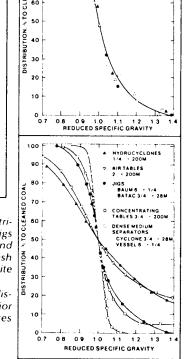
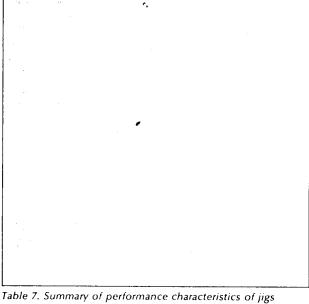




Fig. 7. Generalized distribution curve of Baum jigs at +1/4-in. composite and Batac jigs at +28 mesh composite

Fig. 8. Generalized distribution curves for major U.S. coal cleaning devices

The plants selected for this study were well-kept, well-operated and amenable to a large scale sampling effort. Sampling of all streams was done according to ASTM standards as far as number and size of increments are concerned. Samples were taken from the plant streams over a three to four hour period during a normal operating shift. Sufficient amounts of each product were obtained for a complete, detailed washability. The samples were brought back to the coal preparation laboratory in Pittsburgh where they were screened into at least eight size fractions; each fraction (except for the finest size in each case) was then subjected to float-sink analysis in at least seven specific gravities. Finally, each specific gravity fraction was analyzed for ash, total and pyritic sulfur, and Btu contents (table 2).

All data for each product was compiled and fed to a computer program which reconstituted the feed from the products sampled, and calculated the performance characteristics of the jig's separation.

Baum performance aided by fines removal

Tables 3 and 4 present the complete sets of performance data by size fraction (and by +14 mesh composite) for Baum #1 and Baum #2 respectively. The table shows how each size fraction behaved in the jig, information that is useful in improving the quality of the separation or discovering where the inefficiencies are. For instance, the two jigs have feeds which present similar difficulties of cleaning: the feed ash contents are 33.7 percent (#1) and 38.1 percent (#2), and the amounts of near gravity material are 6.6 percent (#1) and 4.0 percent (#2). But the difference in performance indicated in fig. 3 is substantial, as the probable errors and error areas reflect.

The cause for this inequity in performance can be found by examining the feed screen analysis in tables 3 and 4. Baum jig #1 feed contained 10.6 percent $-\frac{1}{4}$ -in. material, while jig #2 was being fed 43.3 percent. A high percentage of fines is extremely detrimental to the overall quality of the Baum jig separation since a Baum is not designed to clean the fines nearly as well as it does the coarse. This was demonstrated by removing the -1/4in, material's data from the evaluation by compositing the $\pm \frac{1}{4}$ -in. fractions. The results in fig. 4 show a much closer correlation between the two separations because the Baum #2 performance was greatly improved by removal of the finer material. An actual performance of the jig operated without the -1/4-in, material may be even better without the influence of the fine particles on the coarse particle separations.

Batacs do good job down to 28 or 48 mesh

In fact, the need to improve the sharpness of separation of the finer material in jigging was the driving force behind the development of the Batac jig. Generally, the Batac jigs performed almost as well as the Baum jigs, but it is important to remember that we are comparing a fine coal cleaner with a coarse coal cleaner. The two Batacs were fairly close in overall performance down to 200 mesh, as depicted in fig. 5.

The performance characteristics summaries in tables 5 and 6 indicate that the Batacs do a good job of cleaning down to 28 or 48 mesh, but then the quality of separation deteriorates. The data was composited at 28 mesh and the result was slightly better sharpness of separation criteria for both jigs (see fig. 6). This performance data is in line with that reported in recent Batac jig papers. 1, 2

Cleaning performances similar for both jigs

As a summary, the performance characteristics for all four jig composites are presented in table 7. The cleaning performances of the Baum and Batac jig are similar: the probable errors ranged between 0.085 and 0.116, and the error areas only ranged from 63 to 81. But the Baum jig accounted for the lower values in both ranges, while the Batac had the higher ones. Since the four sets of data are alike despite the fact that each washed a different raw coal, it is interesting to plot the distribution data as a generalized distribution curve.3 This is a method by which distribution curves at different specific gravities of separation, for a given piece of coal-cleaning equipment and a given raw coal feed, are combined into a single curve, normalized with respect to specific gravity. In fig. 7, the distribution data for the four jigs has been plotted. The majority of the data points lie on or near the generalized distribution curve, showing consistency among the units sampled.

To compare jig performance with that of other cleaning units studied in the series, the generalized curve of each unit for its respective size range was plotted on the

same graph, as depicted in fig. 8. This clearly are forces the characteristic degree of sharpness of separation that each cleaning device possesses. Of course, the curves are only approximate predictions of performance because they will be affected by size distribution, size range, feed ash and mode of operation.

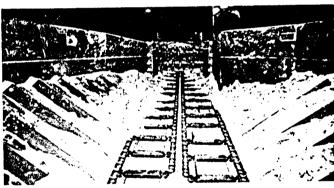
In conclusion, even though the Batac jig uses the same basic principles as the Baum jig, its design and operation allow it to clean the finer fraction of coal ($^{3}/_{4}$ -in. \times 28m) almost as well as the Baum cleans the coarse fraction ($^{6}\times ^{1}/_{4}$ -in.). The overall cleaning performance of jigs is below that of the dense-medium processes and is about the same as that of a concentrating table.

Richard P. Killmeyer Jr. has been engaged in studies involving coal preparation since joining the Coal Preparation Group of the U.S. Bureau of Mines five years ago. The group transferred to the Department of Energy in 1977 and Killmeyer now is a supervisory chemical engineer. His work has encompassed equipment performance studies, dense medium cyclone pilot-

plant testing and instrumentation for preparation plant circuits.

References

Tackett, Charles E. Greenwich Collieries: A Variation in the Art of Coal Washing by Jigs. Presented at AIME Annual Meeting, Atlanta, Ga., 1977.


Hake, W. D. Application of the Batac Jig for Processing Fine Coal. Mining Congress Journal, September 1976.

³Gottfried, B. S. and P. S. Jacobsen, Generalized Distribution Curve for Characterizing the Performance of Coal-Cleaning Equipment, Bureau of Mines R.I. 8238, 1977.

In summation, conversion of the face haulage system at Ojibway has been a combination of triumphs and tribulations. The feeder breaker has generally performed well, especially with the dual, spiral breaker element. The LHD's have produced well when available but have been a high maintenance item. With the modifications made, however, especially in the past year, we now feel much more confident of these units. The economic life of these machines in our operation is still somewhat unknown, and to ensure fulfillment of our projected tonnage requirements, we have purchased a sixth LHD.

Overall the new system has substantially reduced operating labor, maintenance labor and maintenance material costs. At the same time the production capacity has increased, consistent with the original requirements

The feeder is advanced and the conveyor extended in 300-ft increments to give an average one-way haulage distance from the face of about 600 ft

of the project.

In the future, we plan to try and improve on our record and may include such items as extendable conveyor systems to allow conveyor extensions at shorter intervals and reductions in average haulage distance.

A. Hedley Duffield was employed in various production supervisory positions with the National Coal Board in England and Ashanti Goldfields Corp. in West Africa, before emigrating to Canada in 1967. He subsequently worked for Alwinsal Potash of Canada as a shift boss and senior industrial engineer. Duffield joined Canadian Rock Salt Co. in 1972 and since 1977 has been general super-

intendent of the Ojibway mine.